Stochastic Turing patterns: analysis of compartment-based approaches.
نویسندگان
چکیده
Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.
منابع مشابه
SPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملStochastic patterns in a 1D Rock-Paper-Scissor model with mutation
In the framework of a 1D cyclic competition model, the Rock–Paper–Scissor model, where bacteria are allowed to mutate and move in space, we study the formation of stochastic patterns, where all the bacteria species do coexist. We modelled the problem using an individual–based setting and using the system size van Kampen expansion to deal with the Master Equation, we have been able to characteri...
متن کامل0 Stochastic Turing patterns in the Brusselator model
A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters region. When determining the Turing condition for instability, we pay particular attention to the role of cross diffusive terms, often neglected in the heuristic derivation of reacti...
متن کاملEstimating scour below inverted siphon structures using stochastic and soft computing approaches
This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...
متن کامل6 A pr 2 01 2 Stochastic Turing Patterns on a Network
The process of stochastic Turing instability on a network is discussed for a specific case study, the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes, outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 76 12 شماره
صفحات -
تاریخ انتشار 2014